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three steps are grouped together, Covey’s first three habits correspond 
to the order of problem solving following the Systems Approach. First 
the problem is defined, then the desired outcome is envisioned, and 
time and effort are organized to achieve this desired outcome. The 
general reference to problem solution in Habit 3, “Put First Things 
First,” corresponds to many steps in this Systems Approach. Fig. 8 
indicates that these, too, could be integrated into a single category. 

Habits 4, 5 ,  and 6 are more difficult to apply to specific steps. 
Analogous to the overriding principles enumerated in Fig. 3, these 
habits are applicable throughout the problem-solving process. To the 
extent that these steps promote communication, the habits “Think 
Win/Win” and “Seek First to Understand . . .,” apply to almost every 
situation that involves group interaction. More specifically, “Think 
Win/Win,” can apply to creative problem solving and idea generation, 
and “Seek First to Understand . . .” directs the interaction between a 
systems engineer and a client. “Synergize” can also be applied on 
numerous levels. Finally, “Sharpen the Saw” directly corresponds 
to the constant iteration that is stressed throughout the systems 
engineering approach. 

11. CONCLUSION 

The side-by-side comparison of the Seven Habits and the steps in 
the Systems Approach serves to show how the elements of both not 
only correspond but also complement each other. Both philosophies 
stress problem definition, early determination of the desired outcome, 
and an organized effort to determine a solution. They also promote 
similar overriding principles to better enable the problem-solving 
process. This similarity is remarkable given that the Seven Habits 
are a guide to personal development, whereas the Systems Approach 
is geared for systems design and development. Most importantly, 
the comparison of Covey’s philosophy to the philosophy of the 
Systems Approach can help improve the understanding of systems 
engineering. 

ACKNOWLEDGMENT 

The contribution to this paper of the following graduate students, 
who participated in a systems engineering course at the University of 
Virginia, is acknowledged with appreciation: H. Albright, B. Athay, 
E. Brown, P. Delaney, L. Fischer, S. Genberg, T. Get, T. Godkin, A. 
Goltzman, L. Johnson, D. Knauff, M. Lee, M. Lenox, G. Lesinski, R. 
Oelrich, R. Olsen, N. Rajey, D. Salmons, J. Schamburg, A. Schoka, 
K. Stanford, and J. Soltys. 

REFERENCES 

[ I ]  B. S. Blanchard, and W. J. Fabrycky, Systems Engineering undilnalysis. 
Englewood Cliffs, NJ: Prentice Hall, 1990. 

[21 S. R. Covey, The Seven Habits ufHighly Effective People. New York: 
Simon and Schuster, 1989. 

131 W. E. Deming, Out of the Crisis. Cambridge, MA: MIT Center for 
Advanced Engineering Study, 1982. 

L4] M. Imai, Kaizen. New York: McGraw Hill, 1986. 
151 A. Sage, Systems Engineering. New York: Wiley, 1992. 
[6] P. M. Senge, The Fifth Discipline. 
171 J. G. Truxal, Intrwductory Systems Engineering. 

1972. 

New York: Doubleday, 1990. 
New York: New York, 

Learning Bayesian Network Structures by Searching for 
the Best Ordering with Genetic Algorithms 

Pedro Larrafiaga, Cindy M. H. Kuijpers, 
Roberto H. Murga, and Yosu Yurramendi 

Abstract-In this paper we present a new methodology for inducing 
Bayesian network structures from a database of cases. The methodology 
is based on searching for the best ordering of the system variables by 
means of genetic algorithms. Since this problem of finding an optimal 
ordering of variables resembles the traveling salesman problem, we use 
genetic operators that were developed for the latter problem. The quality 
of a variable ordering is evaluated with the structure-learning algorithm 
K2. We present empirical results that were obtained with a simulation of 
the ALARM network. 

I. INTRODUCTION 

Bayesian networks (BN’s) constitute a reasoning method based on 
probability theory. They model causal relations between events. 

A BN consists of a set of nodes and a set of arcs which together 
constitute a directed acyclic graph (DAG). The nodes represent 
random variables, all of which have a finite set of states. The arcs 
indicate the existence of direct causal connections between the linked 
variables, and the strengths of these connections are expressed in 
terms of conditional probabilities. 

To specify the probability distribution of a Bayesian network, 
P(rcl, . . . . z,,), one must give prior probabilities for all root nodes 
(nodes without predecessors) and conditional probabilities for all 
other nodes, given all possible combinations of their direct prede- 
cessors. These numbers in conjunction with the DAG, specify the 
BN completely. The joint probability of any particular instantiation 
o f  all n variables in a BN can be calculated as follows: 

rt 

P(a1, ‘ “ 1  &)  = n P(ZLITTT,), 
L = l  

where L C ~  represents the instantiation of the variable X, and r2 rep- 
resents the instantiation of the parents of X, . Excellent introductions 
on BN’s can be found in [1]-[3]. 

The construction o f  a BN consists of two subproblems, namely 
of the structure learning or search for the DAG that best reflects 
all interdependence relations between the system variables, and of 
the parameter leurning, i.e., the determination of the conditional 
probabilities belonging to the network. 

In this paper we consider the problem of the automatic structure 
learning of BN’s from a database of cases (observations). This 
problem is an interesting one because the construction of a BN 
exclusively from the information provided by an expert is time- 
consuming and subject to mistakes. Therefore, and due to the fact that 
large databases become more accessible, algorithms for automatic 
learning can be of great help. We are not the first to look at this 
problem: a considerable amount of research has been done on the 
induction of causal structures, BN’s and other graphical models. In 
the structure learning of BN’s often an ordering between the nodes 
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of the structure is assumed, in order to reduce the search space. This 
means that a node r c  can only have node xJ as a parent node if in 
the ordering node r j  comes before node ,c,. 

We propose to search for the best ordering and we choose to do 
this using a genetic algorithm. For developing this algorithm, we 
use results of the research carried out on the application of genetic 
algorithms in tackling the intensively studied traveling salesman 
problem (TSP), since the problem of the search for an optimal 
ordering of system variables is not very different from the TSP. We 
evaluate the orderings of the variables with the K2 structure-learning 
algorithm of Cooper and Herskovits [4]. 

The structure of this paper is as follows. In Section 11, we revise the 
most important structure-learning algorithms that were proposed in 
literature. Genetic algorithms are introduced in Section 111. In Section 
IV we consider the resemblance of the problem of the search for an 
optimal ordering of variables and the TSP. In Section V, we explain 
the crossover and mutation operators that we use for our experiments. 
In Section VI, we describe our algorithm. Empirical results with a 
simulation of the ALARM network [SI are presented in Section VII. 
There can be seen that our algorithm is robust, for all combinations 
of parameters it manages to obtain results close to the evaluation of 
the ALARM network. In a final Section VI11 concluding remarks are 
given. 

11. RELATED WORK 

A. Trees and Poly-Trees 

Chow and Liu 161 show how to recover an undirected Markov tree 
from empirical observations using the maximum weight spanning 
tree algorithm. 

Suzuki [7] proposes to carry out structure search using the MDL 
(Minimum Description Length) principle of Rissanen [8]. Suzuki 
focuses on tree structures, in which case his method is a generalization 
of the one of Chow and Liu. 

Rebane and Pearl [9] showed that the algorithm of Chow and Liu 
can also be used for recovering the topology of a poly-tree. They also 
developed an algorithm for recovering the direction of the branches. 

CASTLE (CAusal STructures from inductive LEarning), which 
was developed by Acid et al. [ 101 learns poly-tree structures from 
examples, using the maximum weight spanning tree heuristic in 
combination with some metric to estimate the undirected graph and 
a conditional independence test for the determination of the direction 
of the branches. 

B. Multiple Connected Structures 

1 )  Assuming an Ordering Between the Nodes: Srinivas et al. [ I  I ]  
proposed an algorithm for the automatic construction of sparse 
BN’s from information about the domain provided by an expert. 
The network is constructed by incrementally adding nodes. The 
information of the expert, together with a greedy heuristic that intends 
to minimize the number of arcs, guide, in each step, the search for 
a next node. 

Herskovits and Cooper [ 121 developed the system KUTATO, which 
incorporates a module for constructing belief networks based on en- 
tropy calculations. KUTATO constructs an initial network in which all 
variables in the database are assumed to be marginally independent. 
In every step, the arc is added that, maintaining acyclicity, minimizes 
the entropy of the resulting network. This process continuous until 
an entropy-based threshold i s  reached. 

A Bayesian version of the  last described algorithm was developed 
by the same authors. Cooper and Herskovits [4] proposed K2, 
an algorithm which searches for the most probable belief network 

structure given a database of cases. The K2 algorithm i s  described 
in detail in Section VI. 

Chickering et al. [13] reviewed the BDe metric (Bayesian metric 
with Dirichlet priors) described by Heckerman et al. [14] under 
the name CH, which has a property useful for inferring causation 
called likelihood equivalence, which says that two networks that 
represent the same assertions of conditional independence have the 
same likelihood. 

Bouckaert [15] proposed a measure for the quality of a structure 
based on the MDL principle, using a search algorithm similar to K2. 

Larraiiaga et al. [16] tackled the problem of the search for a 
BN structure that maximizes the metric proposed by Cooper and 
Herkovits with hybrid genetic algorithms. 

2 )  Solving the Restriction of the Ordering: Bouckaert [I71 pre- 
sented an algorithm that manipulates the ordering of the variables with 
operations similar to arc reversal. These operations are only applied 
in case the resulting DAG represents at least the independences that 
were already present in the structure before the application of the 
operator. In this way the set of independences increases incrementally. 

Singh and Valtorta [ 181 developed the CB algorithm (Conditional 
independence + Bayesian learning) with which they intended to 
integrate two of the existing trends in the learning of BN’s. The 
algorithm first uses a conditional independence test based on the x 2 -  
distribution for obtaining an ordering between the variables. Next, 
given this ordering, a structure i s  obtained by means of K2 after 
which, again with K2, the structures are obtained that correspond to 
orderings that are compatible with the partial ordering implied by the 
structure found with the first application of K2. 

Lam and Bacchus [ 191 described a method for learning unrestricted 
multiply-connected belief networks based on the MDL principle, 
which permits to trade off accuracy and complexity. The method 
can be seen as a generalization of other approaches based on the 
cross entropy of Kullback and Leibler and can be interpreted from a 
Bayesian point of view, where the a priori probability to be assigned 
to a structure is inversely proportional to its complexity. 

In [20] Lam and Bacchus improved the algorithm of [19], by 
considering partial information available about the domain. 

Larrafiaga et al. [21] presented a genetic algorithm that used the 
metric that was proposed by Cooper and Herkovits for evaluating 
the quality of an induced structure. They used a repair operator for 
converting offspring structures that were not acyclical into DAG’S. 

Provan and Singh [22] proposed an algorithm called K2-AS (K2 
+ Attribute Selection) in which not all variables (or attributes) about 
which information is present are considered, but only a subset of 
them. That subset should maximize the predictable capacity of the 
network. In this way the generated networks are computationally easy 
to evaluate and their predictability i s  comparable with the networks 
that consider all variables. 

C. Other Graphical Models 

Andersen et al. [23] developed STENO, an expert system for 
medical diagnosis, which combines expert knowledge concerning 
associations between entities with knowledge generated by a statis- 
tical analysis of data relating these entities. It uses the model search 
strategy described by Kreiner [24]. 

Fung and Crawford [25] developed CONSTRUCTOR, a system 
which integrates techniques and concepts of the probabilistic net- 
works, artificial intelligence and statistics, in order to induce Markov 
networks. 

Lauritzen et al. [26] presented results of a medical diagnostic 
system. They compared the diagnostic power of different block 
recursive graphical models induced using the information criterion 
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of Akaike [27], and criteria based on statistical tests. The model 
construction is carried out by means of backward selection. 

Madigan et al. [28] proposed a Bayesian method for finding 
graphical models, in which they, instead of only one model, consider 
several good ones, combining the results from them. 

Mechling and Valtorta [29] proposed an algorithm that constructs 
Markov networks in a similar way to CONSTRUCTOR. 

Provan [30] presented an algorithm for the automatic construction 
of a temporal injuence diagram, i.e., a union of a sequence of 
influence diagrams, each of which model the system during a certain 
interval of time in which the system is supposed to have a static 
behavior. 

111. GENETIC ALGORITHMS 
Holland [31] introduced the genetic algorithms. In these algo- 

rithms, the search space of a problem is represented as a collection 
of individuals. These individuals are represented by character strings, 
which are often referred to as chromosomes. The purpose of the 
use of a genetic algorithm is to find the individual from the search 
space with the best “genetic material.” The quality of an individual 
is measured with an evaluation function. The part of the search space 
to be examined is called the population. 

Roughly, a genetic algorithm works as follows. Firstly, the initial 
population is chosen, and the quality of this population is determined. 
Next, in every iteration parents are selected from the population. 
These parents produce children, which are added to the population. 
For all newly created individuals of the resulting population a 
probability near to zero exists that they “mutate”, i.e., that they 
change their hereditary distinctions. After that, some individuals are 
removed from the population according to a selection criterion in 
order to reduce the population to its initial size. One iteration of the 
algorithm is referred to as a generation. 

The operators which define the child production process and the 
mutation process are called the crossover operator and the mutation 
operator, respectively. Mutation and crossover play different roles 
in the genetic algorithm. Mutation is needed to explore new states 
and helps the algorithm to avoid local optima. Crossover should 
increase the average quality of the population. By choosing adequate 
crossover and mutation operators, the probability that the genetic 
algorithm provides a near-optimal solution in a reasonable number 
of iterations is enlarged. Under certain circumstances, the genetic 
algorithms evolve to the optimum with probability 1 [32]-[34]. 

Further descriptions of genetic algorithms can be found in [35] 
and [36]. 

Iv. RESEMBLANCE TO THE TSP 
The search for an optimal ordering between the variables resembles 

the intensively studied traveling salesman problem (TSP): given a 
collection of cities, determine the shortest tour that visits each city 
precisely once and then returns to its starting point. 

Both problems are ordering problems. However, between both 
problems a difference exists: in the TSP, in general, only the relative 
order is assumed to be important while in our problem the absolute 
order also matters. For example, in the 6-cities TSP, in general, the 
string (1 2 3 4 5 6) is assumed to represent the same tour as the 
string (4 5 6 1 2 3). In the 6-variables ordering problem both strings 
represent different variable orderings. We remark that the variable 
ordering problem is an asymmetrical problem; the string (1 2 3 4 5 
6) does not represent the same variable ordering as the string (6 5 4 
3 2 1). The TSP is often assumed to be symmetrical. 

Because of the similarities between our problem of finding an 
optimal variable ordering and the TSP, we use the results of the 

research carried out on the TSP with genetic algorithms. For a review 
on representations and operators that have been used in tackling the 
TSP with genetic algorithms, see [37]. 

We choose to use, what in relation with the TSP is called, the 
path representation. Therefore, we represent an ordering between the 
variables by a list of numbers, where the ith element of the list is a j 
if variable j has the ith place in the ordering. For example, the string 
(3 1 2) represents the ordering in which v3 is a root node, V I  has as 
possible parent 113, and the possible parents of 02 are v j ,  and v l .  

The genetic operators that we use for our experiments (see Section 
V) have all but the AP operator already been used for tackling the 
TSP. 

V. GENETIC OPERATORS 

A. Crossover Operators 

The partially-mapped crossover (PMX) [38] transmits ordering 
and value information from the parent strings to the offspring. A 
portion of one parent string is mapped onto a portion of the other 
parent string and the remaining information is exchanged. Consider, 
for example, the following two parents: (1 2 3 4 5 6 7 8) and 
(3 7 5 1 6 8 2 4). The PMX operator creates an offspring in the 
following way. It begins by selecting uniformly at random two cut 
points along the strings, which represent the parents. Suppose, for 
example, that the first cut point is selected between the third and 
the fourth string element, and the second one between the sixth and 
the seventh string element. Hence, ( 1  2 3 I 4 5 6 I 7 8) and (3 7 
5 I 1 6 8 I 2 4). The substrings between the cut points are called 
the mapping sections. In our example, they define the mappings 4 
tf 1, 5 c-) 6, and 6 * 8. Now the mapping section of the first 
parent is copied into the second offspring, and the mapping section 
of the second parent is copled into the first offspring: offspring 1: 
(z 2 z l l6  812 z) and offspring 2: (2 .P 214 5 6l.c z). Then offspring i 
( i  = 1, 2) is filled up by copying the elements of the ith parent. 
In case a number is already present in the offspring it is replaced 
according to the mappings. For example, the first element of offspring 
1 would be a 1,  like the first element of the first parent. However, 
there is already a 1 present in offspring 1. Hence, because of the 
mapping 1 tf 4 we choose the first element of offspring 1 to be 
a 4. The second, third and seventh elements of offspring 1 can be 
taken from the first parent. However, the last element of offspring 1 
would be an 8, which is already present. Because of the mappings 
8 * 6, and 6 * 5,  it is chosen to be a 5. Hence, offspring 1: (4 
2 3 I 1 6 8 I 7 5). Analogously, we find offspring 2: (3 7 8 I 4 5 
6 I 2 1). The absolute positions of some elements of both parents 
are preserved. 

The cycle crossover (CX) [39] attempts to create an offspring 
from the parents where every position is occupied by a corresponding 
element from one of the parents. For example, consider again the 
parents ( 1  2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 1). Now we choose 
the first element of the offspring equal to either the first element 
of the first parent string or the first element of the second parent 
string. Hence, the first element of the offspring has to be a 1 or a 
2. Suppose we choose it to be I ,  (1 * * * * * * *). Now consider 
the last element of the offspring. Since this element has to be chosen 
from one of the parents, it can only be an 8 or a I .  However, if a 
1 were selected, the offspring would not represent a legal individual. 
Therefore, an 8 is chosen, ( 1  * * * * * * 8). Analogously, we find that 
the fourth and the second element of the offspring also have to be 
selected from the first parent, which results in (1  2 * 4 * * * 8). The 
positions of the elements chosen up to now are said to be a cycle. 
Now consider the third element of the offspring. This element we 
may choose from any of the parents. Suppose that we select it to be 
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from parent 2. This implies that the fifth, sixth and seventh elements 
of the offspring also have to be chosen from the second parent, as 
they form another cycle. Thus, we find the following offspring: (1 2 
6 4 7 5 3 8). The absolute positions of on average half the elements 
of both parents are preserved. 

The order crossover operator (0x1) [40] constructs an offspring 
by choosing a substring of one parent and preserving the relative 
order of the elements of the other parent. For example, consider the 
following two parent strings: (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 
l), and suppose that we select a first cut point between the second 
and the third bit and a second one between the fifth and the sixth bit. 
Hence, (1 2 I 3 4 5 I 6 7 8) and (2 4 I 6 8 7 I 5 3 I).  The offspring are 
created in the following way. Firstly, the string segments between the 
cut point are copied into the offspring, which gives (* * 1 3 4 5 I * * * ) 
and (* *I68 71* * *). Next, starting from the second cut point of one 
parent, the rest of the elements are copied in the order in which they 
appear in the other parent, also starting from the second cut point 
and omitting the elements that are already present. When the end of 
the parent string is reached, we continue from its first position. In 
our example this gives the following children: (8 713 4 511 2 6)  and 
(4 5 1 6  8 7 I 1 2  3). 

The order-based crossover operator (OXZ), [41] which was 
suggested in connection with schedule problems, is a modification 
of the OX1 operator. The OX2 operator selects at random several 
positions in a parent string, and the order of the elements in the 
selected positions of this parent is imposed on the other parent. For 
example, consider again the parents (1 2 3 4 5 6 7 8) and (2 4 6 
8 7 5 3 I ) ,  and suppose that in the second parent the second, third. 
and sixth positions are selected. The elements in these positions are 
4, 6 and 5 respectively. In the first parent these elements are present 
at the fourth, fifth and sixth positions. Now the offspring is equal to 
parent 1 except in the fourth, fifth and sixth positions: (1 2 3 s s * 
7 8). We add the missing elements to the offspring in the same order 
in which they appear in the second parent. This results in (1 2 3 4 6 
5 7 8). Exchanging the role of the first parent and the second parent 
gives, using the same selected positions, (2 4 3 8 7 5 6 1). 

The position-based crossover operator (POS), [4 11 which was 
also suggested in connection with schedule problems, is a second 
modification of the OX1 operator. It also starts with selecting a 
random set of positions in the parent strings. However, this operator 
imposes the position of the selected elements on the corresponding 
elements of the other parent. For example, consider the parents (1 2 
3 4 5 6 7 8) and (2 4 6 8 7 5 3 l), and suppose that the second, 
third and the sixth positions are selected. This leads to the following 
offspring: (1 4 6 2 3 5 7 8) and (4 2 3 8 7 6 5 1). 

The voting recombination crossover operator (VR) [42] can be 
seen as a p-sexual crossover operator, where p is a natural number 
greater than, or equal to, 2. It starts by defining a threshold, which 
is a natural number smaller than, or equal to, p .  Next, for every 
; E {l> 2, . . . n} the set of ith elements of all the parents is 
considered. If in this set an element occurs at least the threshold 
number of times, it is copied into the offspring. For example, if we 
consider the parents (p = 4) (1 4 3 5 2 6), (1 2 4 3 5 6), (3 2 1 5 
4 6), (1 2 3 4 5 6) and we define the threshold to be equal to 3 we 
find (1 2 z z z 6). The remaining positions of the offspring are filled 
with mutations. Hence, our example might result in (1 2 4 5 3 6). 

The alternating-position crossover operator (AP) [43] creates an 
offspring by selecting alternately the next element of the first parent 
and the next element of the second parent, omitting the elements 
already present in the offspring. For example, if parent 1 is (1 2 3 4 
5 6 7 8) and parent 2 is (3 7 5 1 6 8 2 4), the AP operator gives the 
following offspring (1  3 2 7 5 4 6 8) [41]. Exchanging the parents 
results in (3 1 7 2 5 4 6 8). 

B. Mutation Operators 

The displacement mutation operator (DM) (e.g., [44]) first 
selects a substring at random. This substring is removed from the 
string and inserted in a random place. For example, consider the 
string (1 2 3 4 5 6 7 8), and suppose that the substring (3 4 5 )  is 
selected. Hence, after the removal of the substring we have (1 2 6 
7 8). Suppose that we randomly select element 7 to be the element 
after which the substring is inserted. This gives (1 2 6 7 3 4 5 8). 

The exchange mutation operator (EM) (e.g., [45]) randomly 
selects two elements in the string that represents the individual and 
exchanges them. For example, consider the string (1 2 3 4 5 6 7 8), 
and suppose that the third and the fifth element are randomly selected. 
This results in (1 2 5 4 3 6 7 8). 

The insertion mutation operator (ISM) (e.g., [44]) randomly 
chooses an element in the string that represents the individual, 
removes it from this string, and inserts it in a randomly selected 
place. For example, consider again the string (1 2 3 4 5 6 7 8), 
and suppose that the insertion mutation operator selects element 4, 
removes it, and randomly inserts it after element 7. The resulting 
offspring is (1 2 3 5 6 7 4 8). 

The simple-inversion mutation operator (SIM) (e.g., [3 I]) se- 
lects randomly two cut points in the string that represents the 
individual, and it reverses the substring between these two cut points. 
For example, consider the string (1 2 3 4 5 6 7 8), and suppose that 
the first cut point is chosen between element 2 and element 3, and 
the second cut point between the fifth and the sixth element. This 
results in (1 2 5 4 3 6 7 8). 

The inversion mutation operator (IVM) (e.g., [46]) randomly 
selects a substring, removes it from the string and inserts it, in 
reversed order, in a randomly selected position. Consider again our 
example string (1 2 3 4 5 6 7 8), and suppose that the substring (3 
4 5 )  is chosen, and that this substring is inserted immediately after 
element 7. This gives (I 2 6 7 5 4 3 8). 

The scramble mutation operator (SM) (e.g., [41]) selects a 
random substring and scrambles the elements in it. For example, 
consider the string (1 2 3 4 5 6 7 X), and suppose that the substring 
(4 5 6 7) is chosen. This might result in (1 2 3 5 6 7 4 8). 

VI. PROPOSED APPROACH 
Our approach is based on joining the genetic algorithms and the 

algorithm K2 (see Fig. 1). We search for a near-optimal ordering 
between the variables, with a genetic algorithm that creates new 
variable orderings by means of the crossover and mutation operators 
described in the previous section. The quality of an ordering is the 
evaluation of the BN structure that K2 creates from it. 

K2 is an algorithm that creates and evaluates a BN from a database 
of cases once an ordering between the system variables is given. For 
the evaluation of the network that it constructs, the formula of Cooper 
and Herskovits is used. 

K2 searches, given a database D for the BN structure Bs- 
with maximal P(B.7. D ) ,  where P ( B s .  D )  is as described in the 
following theorem proved in [4]. 

Theorem: Let 2 be a set of n discrete variables, where a variable 
.E, in 2 has r z  possible value assignments: ( z ~ ~ l .  . . , r , , % ) .  Let D 
be a database of cases of rn cases, where each case contains a value 
assignment for each variable in 2. Let B.5 denote a BN structure 
containing just the variables in 2. Each variable IZ', in B.9 has a 
set of parents, which are represented with a list of variables 71,. Let 
U), ,  denote the j t h  unique instantiation of T T ~  relative to D .  Suppose 
there are qz such unique instantiations of TT,. Define N C 3 k  to be the 
number of cases in D in which variable 2% has the value U L h  and irL 
is instantiated as i o z 7 .  Let ATzJ = ~ ~ : x l  :Vt3k. If given a BN model, 
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Algorithni K2 

INPUT: A set of 71 nodes, an ordering on the nodes, an 
upper bound U on the number of parents a node niay have, 
and a database D containing m cases. 
OUTPUT: For each node, a printout of its parent nodes. 
BEGIN K2 

FOR i := 1 TO n DO 
BEGIN 

a. .- 0. 

OKToProceed := TRUE 
WHILE OKToProceed AND tail < U DO 

Z'- , 
Pold := g ( i ,  n;): 

BEGIN 
Let z be the node in Pred(ai) - K ;  that 
niaxinlizes g ( i ,  ~i U { z } ) ;  
Pnew := g( i ,  Ti U { z } ) ;  
IFPnew > Pold THEN 

BEGIN 
Pold := Pnew ; 
nj := ni U { z }  

END 
ELSE OKToProceed := FALSE; 

WRITE('Node:', z;, 'Parents of this node:', xi) 
END; 

END; 
END K2. 

Fig. 1. The K2 algorithm 

the cases occur independently and the density function f (Bp lBs )  is 
uniform, then it follows that 

n 

P(BslD) =P(Bs) r I d i , % ) ,  
Z = I  

where 

U 
The K2 algorithm assumes that an ordering on the variables is 

available and that, a priori, all structures are equally likely. It searches, 
for every node, the set of parent nodes that maximizes y ( i ,  x8). K2 
is a greedy heuristic. It starts by assuming that a node does not 
have parents, after which in every step it adds incrementally that 
parent whose addition most increases the probability of the resulting 
structure. K2 stops adding parents to the nodes when the addition 
of a single parent can not increase the probability. Obviously, this 
approach does not guarantee the selection of a structure with the 
highest probability. 

A possible improvement of K2 could be the determination of the 
best combination of at most u parent nodes in which case the number 
of searches to be carried out for a node j would increase from 

For our experiments, we let the K2 algorithm only construct 
networks which nodes have at most 4 parent nodes. The genetic 
algorithm we use, is an algorithm based on the principles of GEN- 
ITOR, which was developed by Whitley [47]. In every generation 
two orderings are selected for crossover, where the probability of an 
ordering to be selected depends on the rank of its objective function 
value. The newly created offspring substitutes, in case it is better, the 
worst ordering in the population. 

The stop criterion is based on the definition of convergence of 
a population formulated by De Jong [48]. We say that a gene has 

n;=, ( n  - j - i )  to ("-:-I). 

TABLE 1 

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE 
EVALUATION, THE ACCOMPANYING STANDARD DEVIATION AND 

POPULATlON SlZE 10. FOR ALL COMBINATIONS OF OPERATORS, 

THE AVERAGE NUMBER OF EVALUATIONS BEFORE CONVERGENCE 

14,456* 
DM 14,576* 

14,434 

I 754 
I 14,465 

[VM 14,581 I 76 I 550 
I 14,508 

SIM 14,653 I 58 

14,542 

I 

- cx 
14,419 
14,433 

14 
4124 

14,423 
14,439 

15 
4009 

14,423 
14,436 

14 
4483 

14,417 
14,437 

15 
4417 

14,423 
14,437 

14 
3984 

14,423 
14,435 

14 
3928 

__ __ 

~ __ 

___ - 

- - 

__ - 

~ - 

- 

- ox1 
14,442 
14,537 

59 
317 

14,483 
14,552 

48 
266 

14,454 
14,554 

58 
353 

14,472 
14,543 

35 
388 

14,492 
14,561 

39 
385 

__. - 

__ __ 

- 

__ - 

__ - 

14,487 
14,564 

57 
397 __ 

OX2 I PMX I POS I VR 

606 I 276 I 791 I 795 
14,430 I 14,485 114,458 I 14,453 
14,482 14,552 14,486 14,501 

35 1 36 1 26 1 33 
580 212 764 1685 

14,441 14,446 14,434 14,456 
14,478 14,546 14,466 14,493 

14,452 14,510 14,459 14,468 
14,515 14,576 14,510 14,516 

438 257 503 825 

converged at level a, if this gene has the same value in at least an a 
of the individuals in the population. A population converges at level 
,!I, if at least a /? of the genes has converged. We choose a and ,d to 
be equal to 95 and 100, respectively. This convergence criterion does 
not always guarantee the termination of the algorithm. Therefore, we 
decide that the population has also converged if in a certain number 
of subsequent iterations the average fitness of the population has not 
improved. 

VII. RESULTS OF THE EXPERIMENTS 

We study the behavior of the algorithm described with respect to 
the different combinations of crossover and mutation operators of 
Section V. 

If we consider the genetic algorithm as a 7-tuple GA 
(A, a2, a3. u4, p,; p,. (27) where X is the population size, a2 

is the selection criterion, a3 the crossover operator, a4 the mutation 
operator, p c  crossover probability, pm mutation rate, a7 the reduction 
criterion for reducing the population to its original size, then we can 
describe our algorithm as follows: X = 10, 50; a2 = based on the rank 
of the objective function; a3 = AP, CX, 0 x 1 ,  0 x 2 ,  PMX, POS, VR; 
a4 = DM, EM, ISM, IVM, SIM, SM; p c  = 1; p m  = 0.01; a7 = elitist. 

For all 84 (2 x 7 x 6) parameter combinations to be considered 
we carry out 20 searches. 

For the experiments we use a simulation, consisting of the 3000 
first cases obtained by Herskovits [49], of the ALARM network, 
which was designed by Beinlinch et ul. [5] for modeling a problem 
in a medical field. The objective function which expresses the quality 
of the structures is the natural logarithm of the a posteriori probability 
of the database of cases, given the structure to be evaluated, following 
the formula of Cooper and Herskovits [4]. 

The best and average evaluations as well as the accompanying 
standard deviations obtained with the different combinations of 
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TABLE I1 
POPULATION SIZE 50. FOR ALL COMBINATIONs OF OPERATORS, 

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE 
EVALUA~ ION, THE ACCOMPANYING STANDARD DEVIATION AhD 

TIIE AVERACL NUMBER OF EVALUATIONS BEFORE CONVERGEUCE 

I 7921 
I 14,422 

EM 14,449 1 6:;9 
14,422 

1 8355 
I 14,426 

cx I 0x1 I OX2 

13,336 7148 1 3742 
14,422 114,417 114,423 
14,425 14442 14,433 

6 I ; 5  I 12 
15,467 7331 3944 
14,423 I 14,427 I 14,423 

- 
PMX 
14,423 
14,436 

14 

- - 

4350 4049 10,052 1 
14,423 114,423 I 14,424 I 
14,444 

15 
3614 

14,423 
14,437 

14 

- - 

14,437 
14 

3842 
14,423 
14,435 

13 

14,446 

9::6 1 
14,445 

4331 1 3905 1 9872 1 
14,417 I 14,423 114,424 1 
14,433 14,439 14,442 

4683 3898 9445 
13 1 13 1 13 1 

3165 I 3639 1 8161 1 
14,427 114,423 114,432 1 
14,453 114,442 114,455 1 

genetic operators for the population sizes 10 and 50 are presented in 
the Tables I and IT, respectively. If we order the crossover operators 
with respect to their average evaluations, from best to worst we find: 
CX, 0 x 2 ,  POS, VR, PMX, 0 x 1 ,  AP for population size 10 and CX, 
0 x 2 ,  POS, PMX, 0x1, VR, AP for population size 50. Noticeable is 
that as the average evaluation increases, the standard deviation also 
grows. Ordering the mutation operators in the same way, we obtain: 
DM, ISM, IVM, EM, SM, SIM for X = IO and IVM, DM, ISM, 
EM, SIM, SM for X = 50. 

If we apply the Kruskal-Wallis test for comparing the behavior of 
the crossover operators, statistically significant differences are found 
0, < 0.0001) for both X = 10 as well as for X = 30. For the mutation 
operators we obtain the same result. 

For all operators considered, the performance of the algorithm 
becomes better as the population size grows. For the crossover 
operators, however, this tendency is stronger than for the mutation 
operators. 

The evaluation found for the structure induced by the K2 algorithm 
when this algorithm is applied to the order that was used for creating 
the database of cases is -1.4412~04. 

As can be observed in the Tables I and 11, none of the best orderings 
obtained in the searches is able to improve the evaluation of this initial 
ordering. For population size 50, however, the worst best evaluation 
obtained is -1.4442e04, while 4 combinations give orderings the 
structure of which is -1.4417~04. 

In the Tables 1 and I1 also the convergence velocity of the algorithm 
is represented. Ranking the crossover operators from the fastest to the 
slowest, we find: PMX, OX I ,  0 x 2 ,  AP, POS, VR, CX for X = IO and 
0x2, POS, PMX, AP, 0 x 1 ,  VR, CX for X = 50. For the mutation 
operators, we find: SM, DM, SIM, IVM, EM, ISM for X = 10 and 
SIM, SM, EM, ISM, DM, IVM for X = 30. We observe that the CX 
operator, which gives the hest results, implies a slow convergence, 

while the OX2 operator, which is the second best operator, results 
in a considerably faster algorithm. However, we also see that the 
CX operator only needs a small population size to give good results 
while the other crossover operators need larger population sizes. With 
respect to the convergence velocity of the mutation operators, we see 
that the SM operator, which is one of the fastest ones, gives the 
worst results 

VIII. CONCLUDING REMARKS 
We have presented a method for structure learning of BN’s from 

a database of cases with which it is not necessary to assume an 
ordering between the system variables since the method is based on 
searching for the optimal ordering of variables. For this search we 
have proposed a genetic algorithm that uses the K2 algorithm for 
evaluating the orderings and that creates new offspring orderings by 
applying the genetic operators that were already used in the genetic 
tackling of the TSP. 

The empirical results obtained are comparable with the results that 
we presented in [ 161, where we also tackled the structure learning 
of BN’s with genetic algorithms, however, assuming an ordering 
between the variables. 

It would be interesting to see which results would be obtained 
if the best orderings found with the method described in this paper 
were used as an input for an order-assuming (genetic) algorithm for 
learning the structure of BN’s. 

ACKNOWLEDGMENT 

The authors thank G. F. Cooper for providing his simulation of 
the ALARM network. 

REFERENCES 

[ 11 J. Pearl, Probahiiistic Reasoning in Intelligent Systems: Networks of 
Piaiisibie Inference. 

[2] R. E. Neapoli, Probabilistic Reasoning in Expert Systems. Themy and 
Algorirhms. New York: Wiley, 1990. 

[ 3 ]  F. V. Jensen, “Introduction to Bayesian networks,” Dept. or Mathematics 
and Computer Science, Univ. of Aalborg, Denmark, Tech. Report IR 
93-2003, 1993. 

141 G .  F. Cooper and E. A. Herskovits, “A Bayesian method for the 
induction of probabilistic networks from data,” Mach. Learning. vol. 
9. no. 4. pp. 309-347, 1992. 

[5]  I. A. Beinlinch, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, 
”The ALARM monitoring system: A case study with two probabilistic 
inference techniques for belief networks,” in Proc. 2nd Europ. Con5 on 
Art$ciai Iizieliigence in Medicine, 1989, pp. 247-256. 

[6] C. K. Chow and C. N. Liu, “Approximating discrete probability distri- 
butions with dependence trees,” IEEE Trans. fnform. Theory, vol. 14, 
no. 3. pp. 462467, 1968. 

171 J. Suruki, “A construction of Bayesian networks from databases based 
on an MDL principle,” in Proc. 9th Con$ Uncertainty in ArtiJiciaZ 
Intelligence. 1993, pp. 266-213. 

I S ]  J. Rissanen, “Modeling by shortest data description,” Auromaticn, vol. 
14, pp. 465471, 1978. 

191 G. Rebane and J. Pearl, “The recovery of causal poly-trees from 
statistical data,” in Uncertainty in Art$cial Intelligence 3, 1989, pp. 

[lo] S. Acid, L. M. de Campos, A. Gonzalez, R. Molina, and N. PCrez 
de la Blanca, “Learning with CASTLE,” Symbolic and Quantitative 
Approuches to Uncertainh, Lectures Notes in Comput. Sci. 548, R. %use 
and P. Siege1 Eds. 

1111 S. Srinivas, S. Russell, and A. Agogino, “Automated construction of 
sparse Bayesian networks from unstructured probabilistic models and 
domain information,” in Uncertain0 in Artificial Intelligence 5, Windsor, 
Ontario, Canada, 1990, pp. 295-308. 

1121 E. Herskovits and G. Cooper, “KUTATO: An entropy-driven system for 
construction of probabilistic expert systems from databases,” Knowl- 
edge Systems Laboratory, Medical Computer Science, Stanford Univ., 
Stanford, CA, Rep. KSL-90-22, 1990. 

San Mateo, CA: Morgan Kaufmann, 1988. 

175-182. 

Berlin: Springer-Verlag, 1991, pp. 99-106. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 493 

[I31 D. M. Chickering, D. Geiger, and D. Heckerman, “Learning Bayesian 
networks: Search methods and experimental results,” in Preliminary 
Papers 5th Int. Workshop on Artificial Intelligence and Statistics, 1995, 
pp. 112-128. 

[I41 D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian 
networks: The combination of knowledge and statistical data,” in 
Microsoft, Technical Report MSR-TR-94-09, 1994. 

1151 R. R. Bouckaert, “Properties of Bayesian belief networks learning algo- 
rithms,” in Proc. 10th Annual Con5 Uncertainty in Artificial Intelligence, 
Washington, 1994, pp. 102-109. 

[ 161 P. LarraAaga, R. H. Murga, M. Poza, and C. M. H. Kuijpers, “Structure 
learning of Bayesian networks by hybrid genetic algorithms,” in Prelim- 
inary Papers 5th Int. Workshop on Artijicial Intelligence and Statistics, 
1995, pp. 310-316. 

1171 R. R. Bouckaert “Optimizing causal orderings for generating DAG’S 
from data,” in Proc. 8th Con$ Uncertainty in Artificial Intelligence, 
1992, pp. 9-16. 

1181 M. Singh and M. Valtorta, “An algorithm for the construction of 
Bayesian network structures from data,” in Proc. 9th Con$ Uncertainty 
in Artificial Intelligence, Washington, DC, 1993, pp. 259-265. 

[I91 W. Lam and F. Bacchus, “Learning Bayesian belief networks. An 
approach based on the MDL principle,” Computational Intelligence, 
vol. 10, no. 4, 1994. 

[20] ~, “Using causal information and local measures to learn Bayesian 
networks,” in Proc. 9th Con$ Uncertainty in Artificial Intelligence, 
Washington, DC, 1993, pp. 243-250. 

[21] P. Larrafiaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. 
H. Kuijpers, “Structure learning of Bayesian networks by genetic 
algorithms: A performance analysis of control parameters,” IEEE Trans. 
Pattern Anal. Much. Intell., in press. 

[22] G. M. Provan and M. Singh, “Learning Bayesian networks using 
feature selection,” in Preliminary Papers 5th Int. Workshop on Artificial 
Intelligence and Statistics, FL, 1995, pp. 450-456. 

[23] L. R. Andersen, J. H. Krebs, and J. D. Andersen, “STENO: An expert 
system for medical diagnosis based on graphical models and model 
search,” J .  Appl. Stat., vol. 18, no. 1, pp. 139-153, 1991. 

1241 S. Kreiner, “On tests of conditional independence,” Statistical Research 
Unit, University of Copenhagen, Res. Rep. 89/14, 1989. 

[25] R. M. Fung and S. L. Crawford, “Constructor: A system for the 
induction of probabilistic models,” in Proc. M I ,  Boston, MA, 1990, 

[26] S. L. Lauritzen, B. Thiesson, and D. J .  Spiegelhalter, “Diagnostic sys- 
tems created by model selection methods-A case study,” in Preliminary 
Pupers 4th Int. Workshop on Arti$cial Intelligence and Slatistics, 1993, 
pp. 93-105. 

[27] H. Akaike, “New look at the statistical model identification,” IEEE 
Trans. Automat. Contr, vol. 19, pp. 716-722, 1974. 

1281 D. Madigan, A. E. Raffery, J. C. York, J. M. Bradshaw, and R. G. 
Almond, “Strategies for graphical model selection,” in Preliminary 
Papers 4th Int. Workshop on Arti$cial Intelligence and Sluiistics, 1993, 
pp. 331-336. 

[29] R. Mechling and M. Valtorta, “PaCCIN: A parallel constructor of 
Markov networks,” in Preliminary Papers 4th lnt. Workshop on Artijicial 
Intelligence and Statistics, 1993, pp. 405410. 

1301 G. M. Provan, “Model selection for diagnosis and treatment using 
temporal influence diagrams,” in Preliminary Paper.7 5th Int. Workshop 
on ArtiJicid Intelligence and Statistics, 1995, pp. 469-480. 

[31] J. H. Holland, Adaptation in Natural and ArtiJicial Systems. Ann 
Arbor, MI: The Univ. of Michigan Press, 1975. 

[32] U. K. Chakraborty and D. G. Dastidar, “Using reliability analysis to es- 
timate the number of generations to convergence in genetic algorithms,” 
lrform. Proc. Lett., vol. 46, no. 4, pp. 199-209, 1993. 

[33] A. E. Eiben, E. H. L. Aarts, and K. M. van Hee, “Global convergence 
of genetic algorithms: An infinite Markov chain analysis,” Computing 
Science Notes, Eindhoven Univ. of Tech., 1990. 

[34] G. Rudolph, “Convergence analysis of canonical genetic algoritms,” 

pp. 762-769. 

rithms for the travelling salesman problem: A review of representations 
and operators,” submitted to Art$; Intell. Rev. 

1381 D. E. Goldberg and J. R. Lingle, “Alleles, loci and the traveling salesman 
problem,” in Proc. Int. Con$ Genetic Algorithms and Their Applications, 
Pittsburgh, PA, 1985, pp. 154-159. 

[39] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation 
crossover operators on the TSP,” in Proc. 2nd Int. Conj on Genetic 
Algorithms and Their Applications, Cambridge, MA, 1987, pp. 224-230. 

[40] L. Davis, “Applying adaptive algorithms to epistatic domains,” in Proc. 
Inc. Joint Con$ on Artijicial Intelligence, Los Angeles, CA, 1985, pp, 
162-164. 

[41] G. Syswerda, “Schedule optimization using genetic algorithms,” in [36], 
pp. 332-349. 

[42] H. Muhlenbein, “Parallel genetic algorithms, population genetics and 
combinatorial optimization,” in Proc. 3rd lnt, Con$ on Genetic Algo- 
rithms, Arlington, VA, 1989, pp. 416421. 

[43] P. LarraAaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga, “Optimal 
decomposition of Bayesian networks by genetic algorithms,” Dept. of 
Com. Science and Art. Intel., Univ. of the Basque Country, Int. Rep. 
EHU-KZAA-IKT-3-94, 1994. 

1441 Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution 
Programs. Berlin: Springer-Verlag, 1992. 

1451 W. Banzhaf, “The “molecular” traveling salesman,” Bid. Cybern., vol. 
64, pp. 7-14, 1990. 

1461 D. B. Fogel, “A parallel processing approach to a multiple travel- 
ing salesman problem using evolutionary programming,” in Proc. 4th 
Annual Parallel Processing Symp., Fullerton, CA, 1990, pp. 3 18-326. 

1471 D. Whitley, “The GENITOR algorithm and selection pressure: Why 
rank-based allocation of reproductive trials is best,” in Proc. 3rd Int. 
Con$ on Generic Algorithms, Arlington, VA, 1989, pp. 116-121. 

[48] K. A. de Jong, “An analysis of the behavior of a class of genetic adaptive 
systems,” Ph.D. Dissertation, Univ. of Michigan, 1975. 

[491 E. H. Herskovits, “Computer based probabilistic-network construction,” 
Doctoral Dissertation, Dept. Medical Information Sciences, Stanford 
University, Stanford, CA, 1991. 

A New Method for Evaluating Weapon 
Systems Using Fuzzy Set Theory 

Shyi-Ming Chen 

Abstract-This paper presents a new method for evaluating weapon 
systems using fuzzy set theory. The proposed method is more flexible 
than the one presented in 1111 due to the fact that it allows each item 
of criteria to have a different weight represented by a triangular fuzzy 
number. Furthermore, because the proposed method does not need to 
perform complicated entropy weight calculations as described in 1111, its 
execution is much faster than the one shown in [U]. 

1. INTRODUCTION 
In [ 111, Mon et al. have presented a method for evaluating weapon 

systems using fuzzy Analytic Hierarchy Process (AHP) based on 
entropy weights [lo], where an example is used to illustrate the 
method. The example is reviewed as follows. Assume that there are 
three tactical missile systems A, B, and C to be evaluated, where 
the tactical specification data of the three missile systems and the 
expert’s opinions are listed in Tables I and I1 (data source [12]) for 
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