
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PAKT A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 487

three steps are grouped together, Covey’s first three habits correspond
to the order of problem solving following the Systems Approach. First
the problem is defined, then the desired outcome is envisioned, and
time and effort are organized to achieve this desired outcome. The
general reference to problem solution in Habit 3, “Put First Things
First,” corresponds to many steps in this Systems Approach. Fig. 8
indicates that these, too, could be integrated into a single category.

Habits 4, 5 , and 6 are more difficult to apply to specific steps.
Analogous to the overriding principles enumerated in Fig. 3, these
habits are applicable throughout the problem-solving process. To the
extent that these steps promote communication, the habits “Think
Win/Win” and “Seek First to Understand . . .,” apply to almost every
situation that involves group interaction. More specifically, “Think
Win/Win,” can apply to creative problem solving and idea generation,
and “Seek First to Understand . . .” directs the interaction between a
systems engineer and a client. “Synergize” can also be applied on
numerous levels. Finally, “Sharpen the Saw” directly corresponds
to the constant iteration that is stressed throughout the systems
engineering approach.

11. CONCLUSION

The side-by-side comparison of the Seven Habits and the steps in
the Systems Approach serves to show how the elements of both not
only correspond but also complement each other. Both philosophies
stress problem definition, early determination of the desired outcome,
and an organized effort to determine a solution. They also promote
similar overriding principles to better enable the problem-solving
process. This similarity is remarkable given that the Seven Habits
are a guide to personal development, whereas the Systems Approach
is geared for systems design and development. Most importantly,
the comparison of Covey’s philosophy to the philosophy of the
Systems Approach can help improve the understanding of systems
engineering.

ACKNOWLEDGMENT

The contribution to this paper of the following graduate students,
who participated in a systems engineering course at the University of
Virginia, is acknowledged with appreciation: H. Albright, B. Athay,
E. Brown, P. Delaney, L. Fischer, S. Genberg, T. Get, T. Godkin, A.
Goltzman, L. Johnson, D. Knauff, M. Lee, M. Lenox, G. Lesinski, R.
Oelrich, R. Olsen, N. Rajey, D. Salmons, J. Schamburg, A. Schoka,
K. Stanford, and J. Soltys.

REFERENCES

[I] B. S. Blanchard, and W. J. Fabrycky, Systems Engineering undilnalysis.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[21 S. R. Covey, The Seven Habits ufHighly Effective People. New York:
Simon and Schuster, 1989.

131 W. E. Deming, Out of the Crisis. Cambridge, MA: MIT Center for
Advanced Engineering Study, 1982.

L4] M. Imai, Kaizen. New York: McGraw Hill, 1986.
151 A. Sage, Systems Engineering. New York: Wiley, 1992.
[6] P. M. Senge, The Fifth Discipline.
171 J. G. Truxal, Intrwductory Systems Engineering.

1972.

New York: Doubleday, 1990.
New York: New York,

Learning Bayesian Network Structures by Searching for
the Best Ordering with Genetic Algorithms

Pedro Larrafiaga, Cindy M. H. Kuijpers,
Roberto H. Murga, and Yosu Yurramendi

Abstract-In this paper we present a new methodology for inducing
Bayesian network structures from a database of cases. The methodology
is based on searching for the best ordering of the system variables by
means of genetic algorithms. Since this problem of finding an optimal
ordering of variables resembles the traveling salesman problem, we use
genetic operators that were developed for the latter problem. The quality
of a variable ordering is evaluated with the structure-learning algorithm
K2. We present empirical results that were obtained with a simulation of
the ALARM network.

I. INTRODUCTION

Bayesian networks (BN’s) constitute a reasoning method based on
probability theory. They model causal relations between events.

A BN consists of a set of nodes and a set of arcs which together
constitute a directed acyclic graph (DAG). The nodes represent
random variables, all of which have a finite set of states. The arcs
indicate the existence of direct causal connections between the linked
variables, and the strengths of these connections are expressed in
terms of conditional probabilities.

To specify the probability distribution of a Bayesian network,
P(rcl, z,,), one must give prior probabilities for all root nodes
(nodes without predecessors) and conditional probabilities for all
other nodes, given all possible combinations of their direct prede-
cessors. These numbers in conjunction with the DAG, specify the
BN completely. The joint probability of any particular instantiation
o f all n variables in a BN can be calculated as follows:

rt

P(a1, ‘ “ 1 &) = n P(ZLITTT,),
L = l

where L C ~ represents the instantiation of the variable X, and r2 rep-
resents the instantiation of the parents of X, . Excellent introductions
on BN’s can be found in [1]-[3].

The construction o f a BN consists of two subproblems, namely
of the structure learning or search for the DAG that best reflects
all interdependence relations between the system variables, and of
the parameter leurning, i.e., the determination of the conditional
probabilities belonging to the network.

In this paper we consider the problem of the automatic structure
learning of BN’s from a database of cases (observations). This
problem is an interesting one because the construction of a BN
exclusively from the information provided by an expert is time-
consuming and subject to mistakes. Therefore, and due to the fact that
large databases become more accessible, algorithms for automatic
learning can be of great help. We are not the first to look at this
problem: a considerable amount of research has been done on the
induction of causal structures, BN’s and other graphical models. In
the structure learning of BN’s often an ordering between the nodes

Manuscript received March 18, 1995; revised July 25, 1995. This work was
supported by the Diputaci6n Fora1 de Cipuzkoa, under Grant OF 95/1127 and
by the Fondo de Investigacibn Sanitaria, Ministerio de Saniddd y Consumo,
under Grant 94/1370.

The authors are with the Department of Computer Science and Artificial
Intelligence, University of the Basque Country, 20080 San Sebastiin, Spain
(e-mail: ccplamup@si.ehu.es).

Publisher Item Identifier S 1083-4427(96)03846-5.

1083-4427/96$05.00 0 1996 IEEE

488 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

of the structure is assumed, in order to reduce the search space. This
means that a node r c can only have node xJ as a parent node if in
the ordering node r j comes before node ,c,.

We propose to search for the best ordering and we choose to do
this using a genetic algorithm. For developing this algorithm, we
use results of the research carried out on the application of genetic
algorithms in tackling the intensively studied traveling salesman
problem (TSP), since the problem of the search for an optimal
ordering of system variables is not very different from the TSP. We
evaluate the orderings of the variables with the K2 structure-learning
algorithm of Cooper and Herskovits [4].

The structure of this paper is as follows. In Section 11, we revise the
most important structure-learning algorithms that were proposed in
literature. Genetic algorithms are introduced in Section 111. In Section
IV we consider the resemblance of the problem of the search for an
optimal ordering of variables and the TSP. In Section V, we explain
the crossover and mutation operators that we use for our experiments.
In Section VI, we describe our algorithm. Empirical results with a
simulation of the ALARM network [SI are presented in Section VII.
There can be seen that our algorithm is robust, for all combinations
of parameters it manages to obtain results close to the evaluation of
the ALARM network. In a final Section VI11 concluding remarks are
given.

11. RELATED WORK

A. Trees and Poly-Trees

Chow and Liu 161 show how to recover an undirected Markov tree
from empirical observations using the maximum weight spanning
tree algorithm.

Suzuki [7] proposes to carry out structure search using the MDL
(Minimum Description Length) principle of Rissanen [8]. Suzuki
focuses on tree structures, in which case his method is a generalization
of the one of Chow and Liu.

Rebane and Pearl [9] showed that the algorithm of Chow and Liu
can also be used for recovering the topology of a poly-tree. They also
developed an algorithm for recovering the direction of the branches.

CASTLE (CAusal STructures from inductive LEarning), which
was developed by Acid et al. [101 learns poly-tree structures from
examples, using the maximum weight spanning tree heuristic in
combination with some metric to estimate the undirected graph and
a conditional independence test for the determination of the direction
of the branches.

B. Multiple Connected Structures

1) Assuming an Ordering Between the Nodes: Srinivas et al. [I I]
proposed an algorithm for the automatic construction of sparse
BN’s from information about the domain provided by an expert.
The network is constructed by incrementally adding nodes. The
information of the expert, together with a greedy heuristic that intends
to minimize the number of arcs, guide, in each step, the search for
a next node.

Herskovits and Cooper [121 developed the system KUTATO, which
incorporates a module for constructing belief networks based on en-
tropy calculations. KUTATO constructs an initial network in which all
variables in the database are assumed to be marginally independent.
In every step, the arc is added that, maintaining acyclicity, minimizes
the entropy of the resulting network. This process continuous until
an entropy-based threshold i s reached.

A Bayesian version of the last described algorithm was developed
by the same authors. Cooper and Herskovits [4] proposed K2,
an algorithm which searches for the most probable belief network

structure given a database of cases. The K2 algorithm i s described
in detail in Section VI.

Chickering et al. [13] reviewed the BDe metric (Bayesian metric
with Dirichlet priors) described by Heckerman et al. [14] under
the name CH, which has a property useful for inferring causation
called likelihood equivalence, which says that two networks that
represent the same assertions of conditional independence have the
same likelihood.

Bouckaert [15] proposed a measure for the quality of a structure
based on the MDL principle, using a search algorithm similar to K2.

Larraiiaga et al. [16] tackled the problem of the search for a
BN structure that maximizes the metric proposed by Cooper and
Herkovits with hybrid genetic algorithms.

2) Solving the Restriction of the Ordering: Bouckaert [I71 pre-
sented an algorithm that manipulates the ordering of the variables with
operations similar to arc reversal. These operations are only applied
in case the resulting DAG represents at least the independences that
were already present in the structure before the application of the
operator. In this way the set of independences increases incrementally.

Singh and Valtorta [181 developed the CB algorithm (Conditional
independence + Bayesian learning) with which they intended to
integrate two of the existing trends in the learning of BN’s. The
algorithm first uses a conditional independence test based on the x 2 -
distribution for obtaining an ordering between the variables. Next,
given this ordering, a structure i s obtained by means of K2 after
which, again with K2, the structures are obtained that correspond to
orderings that are compatible with the partial ordering implied by the
structure found with the first application of K2.

Lam and Bacchus [191 described a method for learning unrestricted
multiply-connected belief networks based on the MDL principle,
which permits to trade off accuracy and complexity. The method
can be seen as a generalization of other approaches based on the
cross entropy of Kullback and Leibler and can be interpreted from a
Bayesian point of view, where the a priori probability to be assigned
to a structure is inversely proportional to its complexity.

In [20] Lam and Bacchus improved the algorithm of [19], by
considering partial information available about the domain.

Larrafiaga et al. [21] presented a genetic algorithm that used the
metric that was proposed by Cooper and Herkovits for evaluating
the quality of an induced structure. They used a repair operator for
converting offspring structures that were not acyclical into DAG’S.

Provan and Singh [22] proposed an algorithm called K2-AS (K2
+ Attribute Selection) in which not all variables (or attributes) about
which information is present are considered, but only a subset of
them. That subset should maximize the predictable capacity of the
network. In this way the generated networks are computationally easy
to evaluate and their predictability i s comparable with the networks
that consider all variables.

C. Other Graphical Models

Andersen et al. [23] developed STENO, an expert system for
medical diagnosis, which combines expert knowledge concerning
associations between entities with knowledge generated by a statis-
tical analysis of data relating these entities. It uses the model search
strategy described by Kreiner [24].

Fung and Crawford [25] developed CONSTRUCTOR, a system
which integrates techniques and concepts of the probabilistic net-
works, artificial intelligence and statistics, in order to induce Markov
networks.

Lauritzen et al. [26] presented results of a medical diagnostic
system. They compared the diagnostic power of different block
recursive graphical models induced using the information criterion

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 489

of Akaike [27], and criteria based on statistical tests. The model
construction is carried out by means of backward selection.

Madigan et al. [28] proposed a Bayesian method for finding
graphical models, in which they, instead of only one model, consider
several good ones, combining the results from them.

Mechling and Valtorta [29] proposed an algorithm that constructs
Markov networks in a similar way to CONSTRUCTOR.

Provan [30] presented an algorithm for the automatic construction
of a temporal injuence diagram, i.e., a union of a sequence of
influence diagrams, each of which model the system during a certain
interval of time in which the system is supposed to have a static
behavior.

111. GENETIC ALGORITHMS
Holland [31] introduced the genetic algorithms. In these algo-

rithms, the search space of a problem is represented as a collection
of individuals. These individuals are represented by character strings,
which are often referred to as chromosomes. The purpose of the
use of a genetic algorithm is to find the individual from the search
space with the best “genetic material.” The quality of an individual
is measured with an evaluation function. The part of the search space
to be examined is called the population.

Roughly, a genetic algorithm works as follows. Firstly, the initial
population is chosen, and the quality of this population is determined.
Next, in every iteration parents are selected from the population.
These parents produce children, which are added to the population.
For all newly created individuals of the resulting population a
probability near to zero exists that they “mutate”, i.e., that they
change their hereditary distinctions. After that, some individuals are
removed from the population according to a selection criterion in
order to reduce the population to its initial size. One iteration of the
algorithm is referred to as a generation.

The operators which define the child production process and the
mutation process are called the crossover operator and the mutation
operator, respectively. Mutation and crossover play different roles
in the genetic algorithm. Mutation is needed to explore new states
and helps the algorithm to avoid local optima. Crossover should
increase the average quality of the population. By choosing adequate
crossover and mutation operators, the probability that the genetic
algorithm provides a near-optimal solution in a reasonable number
of iterations is enlarged. Under certain circumstances, the genetic
algorithms evolve to the optimum with probability 1 [32]-[34].

Further descriptions of genetic algorithms can be found in [35]
and [36].

Iv. RESEMBLANCE TO THE TSP
The search for an optimal ordering between the variables resembles

the intensively studied traveling salesman problem (TSP): given a
collection of cities, determine the shortest tour that visits each city
precisely once and then returns to its starting point.

Both problems are ordering problems. However, between both
problems a difference exists: in the TSP, in general, only the relative
order is assumed to be important while in our problem the absolute
order also matters. For example, in the 6-cities TSP, in general, the
string (1 2 3 4 5 6) is assumed to represent the same tour as the
string (4 5 6 1 2 3). In the 6-variables ordering problem both strings
represent different variable orderings. We remark that the variable
ordering problem is an asymmetrical problem; the string (1 2 3 4 5
6) does not represent the same variable ordering as the string (6 5 4
3 2 1). The TSP is often assumed to be symmetrical.

Because of the similarities between our problem of finding an
optimal variable ordering and the TSP, we use the results of the

research carried out on the TSP with genetic algorithms. For a review
on representations and operators that have been used in tackling the
TSP with genetic algorithms, see [37].

We choose to use, what in relation with the TSP is called, the
path representation. Therefore, we represent an ordering between the
variables by a list of numbers, where the ith element of the list is a j
if variable j has the ith place in the ordering. For example, the string
(3 1 2) represents the ordering in which v3 is a root node, V I has as
possible parent 113, and the possible parents of 02 are v j , and v l .

The genetic operators that we use for our experiments (see Section
V) have all but the AP operator already been used for tackling the
TSP.

V. GENETIC OPERATORS

A. Crossover Operators

The partially-mapped crossover (PMX) [38] transmits ordering
and value information from the parent strings to the offspring. A
portion of one parent string is mapped onto a portion of the other
parent string and the remaining information is exchanged. Consider,
for example, the following two parents: (1 2 3 4 5 6 7 8) and
(3 7 5 1 6 8 2 4). The PMX operator creates an offspring in the
following way. It begins by selecting uniformly at random two cut
points along the strings, which represent the parents. Suppose, for
example, that the first cut point is selected between the third and
the fourth string element, and the second one between the sixth and
the seventh string element. Hence, (1 2 3 I 4 5 6 I 7 8) and (3 7
5 I 1 6 8 I 2 4). The substrings between the cut points are called
the mapping sections. In our example, they define the mappings 4
tf 1, 5 c-) 6, and 6 * 8. Now the mapping section of the first
parent is copied into the second offspring, and the mapping section
of the second parent is copled into the first offspring: offspring 1:
(z 2 z l l6 812 z) and offspring 2: (2 .P 214 5 6l.c z). Then offspring i
(i = 1, 2) is filled up by copying the elements of the ith parent.
In case a number is already present in the offspring it is replaced
according to the mappings. For example, the first element of offspring
1 would be a 1, like the first element of the first parent. However,
there is already a 1 present in offspring 1. Hence, because of the
mapping 1 tf 4 we choose the first element of offspring 1 to be
a 4. The second, third and seventh elements of offspring 1 can be
taken from the first parent. However, the last element of offspring 1
would be an 8, which is already present. Because of the mappings
8 * 6, and 6 * 5, it is chosen to be a 5. Hence, offspring 1: (4
2 3 I 1 6 8 I 7 5). Analogously, we find offspring 2: (3 7 8 I 4 5
6 I 2 1). The absolute positions of some elements of both parents
are preserved.

The cycle crossover (CX) [39] attempts to create an offspring
from the parents where every position is occupied by a corresponding
element from one of the parents. For example, consider again the
parents (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3 1). Now we choose
the first element of the offspring equal to either the first element
of the first parent string or the first element of the second parent
string. Hence, the first element of the offspring has to be a 1 or a
2. Suppose we choose it to be I , (1 * * * * * * *). Now consider
the last element of the offspring. Since this element has to be chosen
from one of the parents, it can only be an 8 or a I . However, if a
1 were selected, the offspring would not represent a legal individual.
Therefore, an 8 is chosen, (1 * * * * * * 8). Analogously, we find that
the fourth and the second element of the offspring also have to be
selected from the first parent, which results in (1 2 * 4 * * * 8). The
positions of the elements chosen up to now are said to be a cycle.
Now consider the third element of the offspring. This element we
may choose from any of the parents. Suppose that we select it to be

*"'3 CYBERNETICS-PART A. SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

from parent 2. This implies that the fifth, sixth and seventh elements
of the offspring also have to be chosen from the second parent, as
they form another cycle. Thus, we find the following offspring: (1 2
6 4 7 5 3 8). The absolute positions of on average half the elements
of both parents are preserved.

The order crossover operator (0x1) [40] constructs an offspring
by choosing a substring of one parent and preserving the relative
order of the elements of the other parent. For example, consider the
following two parent strings: (1 2 3 4 5 6 7 8) and (2 4 6 8 7 5 3
l), and suppose that we select a first cut point between the second
and the third bit and a second one between the fifth and the sixth bit.
Hence, (1 2 I 3 4 5 I 6 7 8) and (2 4 I 6 8 7 I 5 3 I). The offspring are
created in the following way. Firstly, the string segments between the
cut point are copied into the offspring, which gives (* * 1 3 4 5 I * * *)
and (* *I68 71* * *). Next, starting from the second cut point of one
parent, the rest of the elements are copied in the order in which they
appear in the other parent, also starting from the second cut point
and omitting the elements that are already present. When the end of
the parent string is reached, we continue from its first position. In
our example this gives the following children: (8 713 4 511 2 6) and
(4 5 1 6 8 7 I 1 2 3).

The order-based crossover operator (OXZ), [41] which was
suggested in connection with schedule problems, is a modification
of the OX1 operator. The OX2 operator selects at random several
positions in a parent string, and the order of the elements in the
selected positions of this parent is imposed on the other parent. For
example, consider again the parents (1 2 3 4 5 6 7 8) and (2 4 6
8 7 5 3 I) , and suppose that in the second parent the second, third.
and sixth positions are selected. The elements in these positions are
4, 6 and 5 respectively. In the first parent these elements are present
at the fourth, fifth and sixth positions. Now the offspring is equal to
parent 1 except in the fourth, fifth and sixth positions: (1 2 3 s s *
7 8). We add the missing elements to the offspring in the same order
in which they appear in the second parent. This results in (1 2 3 4 6
5 7 8). Exchanging the role of the first parent and the second parent
gives, using the same selected positions, (2 4 3 8 7 5 6 1).

The position-based crossover operator (POS), [4 11 which was
also suggested in connection with schedule problems, is a second
modification of the OX1 operator. It also starts with selecting a
random set of positions in the parent strings. However, this operator
imposes the position of the selected elements on the corresponding
elements of the other parent. For example, consider the parents (1 2
3 4 5 6 7 8) and (2 4 6 8 7 5 3 l), and suppose that the second,
third and the sixth positions are selected. This leads to the following
offspring: (1 4 6 2 3 5 7 8) and (4 2 3 8 7 6 5 1).

The voting recombination crossover operator (VR) [42] can be
seen as a p-sexual crossover operator, where p is a natural number
greater than, or equal to, 2. It starts by defining a threshold, which
is a natural number smaller than, or equal to, p . Next, for every
; E {l> 2, . . . n} the set of ith elements of all the parents is
considered. If in this set an element occurs at least the threshold
number of times, it is copied into the offspring. For example, if we
consider the parents (p = 4) (1 4 3 5 2 6), (1 2 4 3 5 6), (3 2 1 5
4 6), (1 2 3 4 5 6) and we define the threshold to be equal to 3 we
find (1 2 z z z 6). The remaining positions of the offspring are filled
with mutations. Hence, our example might result in (1 2 4 5 3 6).

The alternating-position crossover operator (AP) [43] creates an
offspring by selecting alternately the next element of the first parent
and the next element of the second parent, omitting the elements
already present in the offspring. For example, if parent 1 is (1 2 3 4
5 6 7 8) and parent 2 is (3 7 5 1 6 8 2 4), the AP operator gives the
following offspring (1 3 2 7 5 4 6 8) [41]. Exchanging the parents
results in (3 1 7 2 5 4 6 8).

B. Mutation Operators

The displacement mutation operator (DM) (e.g., [44]) first
selects a substring at random. This substring is removed from the
string and inserted in a random place. For example, consider the
string (1 2 3 4 5 6 7 8), and suppose that the substring (3 4 5) is
selected. Hence, after the removal of the substring we have (1 2 6
7 8). Suppose that we randomly select element 7 to be the element
after which the substring is inserted. This gives (1 2 6 7 3 4 5 8).

The exchange mutation operator (EM) (e.g., [45]) randomly
selects two elements in the string that represents the individual and
exchanges them. For example, consider the string (1 2 3 4 5 6 7 8),
and suppose that the third and the fifth element are randomly selected.
This results in (1 2 5 4 3 6 7 8).

The insertion mutation operator (ISM) (e.g., [44]) randomly
chooses an element in the string that represents the individual,
removes it from this string, and inserts it in a randomly selected
place. For example, consider again the string (1 2 3 4 5 6 7 8),
and suppose that the insertion mutation operator selects element 4,
removes it, and randomly inserts it after element 7. The resulting
offspring is (1 2 3 5 6 7 4 8).

The simple-inversion mutation operator (SIM) (e.g., [3 I]) se-
lects randomly two cut points in the string that represents the
individual, and it reverses the substring between these two cut points.
For example, consider the string (1 2 3 4 5 6 7 8), and suppose that
the first cut point is chosen between element 2 and element 3, and
the second cut point between the fifth and the sixth element. This
results in (1 2 5 4 3 6 7 8).

The inversion mutation operator (IVM) (e.g., [46]) randomly
selects a substring, removes it from the string and inserts it, in
reversed order, in a randomly selected position. Consider again our
example string (1 2 3 4 5 6 7 8), and suppose that the substring (3
4 5) is chosen, and that this substring is inserted immediately after
element 7. This gives (I 2 6 7 5 4 3 8).

The scramble mutation operator (SM) (e.g., [41]) selects a
random substring and scrambles the elements in it. For example,
consider the string (1 2 3 4 5 6 7 X), and suppose that the substring
(4 5 6 7) is chosen. This might result in (1 2 3 5 6 7 4 8).

VI. PROPOSED APPROACH
Our approach is based on joining the genetic algorithms and the

algorithm K2 (see Fig. 1). We search for a near-optimal ordering
between the variables, with a genetic algorithm that creates new
variable orderings by means of the crossover and mutation operators
described in the previous section. The quality of an ordering is the
evaluation of the BN structure that K2 creates from it.

K2 is an algorithm that creates and evaluates a BN from a database
of cases once an ordering between the system variables is given. For
the evaluation of the network that it constructs, the formula of Cooper
and Herskovits is used.

K2 searches, given a database D for the BN structure Bs-
with maximal P(B.7. D) , where P (B s . D) is as described in the
following theorem proved in [4].

Theorem: Let 2 be a set of n discrete variables, where a variable
.E, in 2 has r z possible value assignments: (z ~ ~ l . . . , r , , %) . Let D
be a database of cases of rn cases, where each case contains a value
assignment for each variable in 2. Let B.5 denote a BN structure
containing just the variables in 2. Each variable IZ', in B.9 has a
set of parents, which are represented with a list of variables 71,. Let
U), , denote the j t h unique instantiation of T T ~ relative to D . Suppose
there are qz such unique instantiations of TT,. Define N C 3 k to be the
number of cases in D in which variable 2% has the value U L h and irL
is instantiated as i o z 7 . Let ATzJ = ~ ~ : x l :Vt3k. If given a BN model,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 49 1

Algorithni K2

INPUT: A set of 71 nodes, an ordering on the nodes, an
upper bound U on the number of parents a node niay have,
and a database D containing m cases.
OUTPUT: For each node, a printout of its parent nodes.
BEGIN K2

FOR i := 1 TO n DO
BEGIN

a. .- 0.

OKToProceed := TRUE
WHILE OKToProceed AND tail < U DO

Z'- ,
Pold := g (i , n;):

BEGIN
Let z be the node in Pred(ai) - K ; that
niaxinlizes g (i , ~i U { z }) ;
Pnew := g(i , Ti U { z }) ;
IFPnew > Pold THEN

BEGIN
Pold := Pnew ;
nj := ni U { z }

END
ELSE OKToProceed := FALSE;

WRITE('Node:', z;, 'Parents of this node:', xi)
END;

END;
END K2.

Fig. 1. The K2 algorithm

the cases occur independently and the density function f (Bp lBs) is
uniform, then it follows that

n

P(BslD) =P(Bs) r I d i , %) ,
Z = I

where

U
The K2 algorithm assumes that an ordering on the variables is

available and that, a priori, all structures are equally likely. It searches,
for every node, the set of parent nodes that maximizes y (i , x8). K2
is a greedy heuristic. It starts by assuming that a node does not
have parents, after which in every step it adds incrementally that
parent whose addition most increases the probability of the resulting
structure. K2 stops adding parents to the nodes when the addition
of a single parent can not increase the probability. Obviously, this
approach does not guarantee the selection of a structure with the
highest probability.

A possible improvement of K2 could be the determination of the
best combination of at most u parent nodes in which case the number
of searches to be carried out for a node j would increase from

For our experiments, we let the K2 algorithm only construct
networks which nodes have at most 4 parent nodes. The genetic
algorithm we use, is an algorithm based on the principles of GEN-
ITOR, which was developed by Whitley [47]. In every generation
two orderings are selected for crossover, where the probability of an
ordering to be selected depends on the rank of its objective function
value. The newly created offspring substitutes, in case it is better, the
worst ordering in the population.

The stop criterion is based on the definition of convergence of
a population formulated by De Jong [48]. We say that a gene has

n;=, (n - j - i) to ("-:-I).

TABLE 1

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE
EVALUATION, THE ACCOMPANYING STANDARD DEVIATION AND

POPULATlON SlZE 10. FOR ALL COMBINATIONS OF OPERATORS,

THE AVERAGE NUMBER OF EVALUATIONS BEFORE CONVERGENCE

14,456*
DM 14,576*

14,434

I 754
I 14,465

[VM 14,581 I 76 I 550
I 14,508

SIM 14,653 I 58

14,542

I

- cx
14,419
14,433

14
4124

14,423
14,439

15
4009

14,423
14,436

14
4483

14,417
14,437

15
4417

14,423
14,437

14
3984

14,423
14,435

14
3928

__ __

~ __

___ -

- -

__ -

~ -

-

- ox1
14,442
14,537

59
317

14,483
14,552

48
266

14,454
14,554

58
353

14,472
14,543

35
388

14,492
14,561

39
385

__. -

__ __

-

__ -

__ -

14,487
14,564

57
397 __

OX2 I PMX I POS I VR

606 I 276 I 791 I 795
14,430 I 14,485 114,458 I 14,453
14,482 14,552 14,486 14,501

35 1 36 1 26 1 33
580 212 764 1685

14,441 14,446 14,434 14,456
14,478 14,546 14,466 14,493

14,452 14,510 14,459 14,468
14,515 14,576 14,510 14,516

438 257 503 825

converged at level a, if this gene has the same value in at least an a
of the individuals in the population. A population converges at level
,!I, if at least a /? of the genes has converged. We choose a and ,d to
be equal to 95 and 100, respectively. This convergence criterion does
not always guarantee the termination of the algorithm. Therefore, we
decide that the population has also converged if in a certain number
of subsequent iterations the average fitness of the population has not
improved.

VII. RESULTS OF THE EXPERIMENTS

We study the behavior of the algorithm described with respect to
the different combinations of crossover and mutation operators of
Section V.

If we consider the genetic algorithm as a 7-tuple GA
(A, a2, a3. u4, p,; p,. (27) where X is the population size, a2

is the selection criterion, a3 the crossover operator, a4 the mutation
operator, p c crossover probability, pm mutation rate, a7 the reduction
criterion for reducing the population to its original size, then we can
describe our algorithm as follows: X = 10, 50; a2 = based on the rank
of the objective function; a3 = AP, CX, 0 x 1 , 0 x 2 , PMX, POS, VR;
a4 = DM, EM, ISM, IVM, SIM, SM; p c = 1; p m = 0.01; a7 = elitist.

For all 84 (2 x 7 x 6) parameter combinations to be considered
we carry out 20 searches.

For the experiments we use a simulation, consisting of the 3000
first cases obtained by Herskovits [49], of the ALARM network,
which was designed by Beinlinch et ul. [5] for modeling a problem
in a medical field. The objective function which expresses the quality
of the structures is the natural logarithm of the a posteriori probability
of the database of cases, given the structure to be evaluated, following
the formula of Cooper and Herskovits [4].

The best and average evaluations as well as the accompanying
standard deviations obtained with the different combinations of

492 IEEE TRANSACTIONS ON SYSTEMS, MAN. AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996

TABLE I1
POPULATION SIZE 50. FOR ALL COMBINATIONs OF OPERATORS,

RESPECTIVELY: THE BEST EVALUATION, THE AVERAGE
EVALUA~ ION, THE ACCOMPANYING STANDARD DEVIATION AhD

TIIE AVERACL NUMBER OF EVALUATIONS BEFORE CONVERGEUCE

I 7921
I 14,422

EM 14,449 1 6:;9
14,422

1 8355
I 14,426

cx I 0x1 I OX2

13,336 7148 1 3742
14,422 114,417 114,423
14,425 14442 14,433

6 I ; 5 I 12
15,467 7331 3944
14,423 I 14,427 I 14,423

-
PMX
14,423
14,436

14

- -

4350 4049 10,052 1
14,423 114,423 I 14,424 I
14,444

15
3614

14,423
14,437

14

- -

14,437
14

3842
14,423
14,435

13

14,446

9::6 1
14,445

4331 1 3905 1 9872 1
14,417 I 14,423 114,424 1
14,433 14,439 14,442

4683 3898 9445
13 1 13 1 13 1

3165 I 3639 1 8161 1
14,427 114,423 114,432 1
14,453 114,442 114,455 1

genetic operators for the population sizes 10 and 50 are presented in
the Tables I and IT, respectively. If we order the crossover operators
with respect to their average evaluations, from best to worst we find:
CX, 0 x 2 , POS, VR, PMX, 0 x 1 , AP for population size 10 and CX,
0 x 2 , POS, PMX, 0x1, VR, AP for population size 50. Noticeable is
that as the average evaluation increases, the standard deviation also
grows. Ordering the mutation operators in the same way, we obtain:
DM, ISM, IVM, EM, SM, SIM for X = IO and IVM, DM, ISM,
EM, SIM, SM for X = 50.

If we apply the Kruskal-Wallis test for comparing the behavior of
the crossover operators, statistically significant differences are found
0, < 0.0001) for both X = 10 as well as for X = 30. For the mutation
operators we obtain the same result.

For all operators considered, the performance of the algorithm
becomes better as the population size grows. For the crossover
operators, however, this tendency is stronger than for the mutation
operators.

The evaluation found for the structure induced by the K2 algorithm
when this algorithm is applied to the order that was used for creating
the database of cases is -1.4412~04.

As can be observed in the Tables I and 11, none of the best orderings
obtained in the searches is able to improve the evaluation of this initial
ordering. For population size 50, however, the worst best evaluation
obtained is -1.4442e04, while 4 combinations give orderings the
structure of which is -1.4417~04.

In the Tables 1 and I1 also the convergence velocity of the algorithm
is represented. Ranking the crossover operators from the fastest to the
slowest, we find: PMX, OX I , 0 x 2 , AP, POS, VR, CX for X = IO and
0x2, POS, PMX, AP, 0 x 1 , VR, CX for X = 50. For the mutation
operators, we find: SM, DM, SIM, IVM, EM, ISM for X = 10 and
SIM, SM, EM, ISM, DM, IVM for X = 30. We observe that the CX
operator, which gives the hest results, implies a slow convergence,

while the OX2 operator, which is the second best operator, results
in a considerably faster algorithm. However, we also see that the
CX operator only needs a small population size to give good results
while the other crossover operators need larger population sizes. With
respect to the convergence velocity of the mutation operators, we see
that the SM operator, which is one of the fastest ones, gives the
worst results

VIII. CONCLUDING REMARKS
We have presented a method for structure learning of BN’s from

a database of cases with which it is not necessary to assume an
ordering between the system variables since the method is based on
searching for the optimal ordering of variables. For this search we
have proposed a genetic algorithm that uses the K2 algorithm for
evaluating the orderings and that creates new offspring orderings by
applying the genetic operators that were already used in the genetic
tackling of the TSP.

The empirical results obtained are comparable with the results that
we presented in [161, where we also tackled the structure learning
of BN’s with genetic algorithms, however, assuming an ordering
between the variables.

It would be interesting to see which results would be obtained
if the best orderings found with the method described in this paper
were used as an input for an order-assuming (genetic) algorithm for
learning the structure of BN’s.

ACKNOWLEDGMENT

The authors thank G. F. Cooper for providing his simulation of
the ALARM network.

REFERENCES

[11 J. Pearl, Probahiiistic Reasoning in Intelligent Systems: Networks of
Piaiisibie Inference.

[2] R. E. Neapoli, Probabilistic Reasoning in Expert Systems. Themy and
Algorirhms. New York: Wiley, 1990.

[3] F. V. Jensen, “Introduction to Bayesian networks,” Dept. or Mathematics
and Computer Science, Univ. of Aalborg, Denmark, Tech. Report IR
93-2003, 1993.

141 G . F. Cooper and E. A. Herskovits, “A Bayesian method for the
induction of probabilistic networks from data,” Mach. Learning. vol.
9. no. 4. pp. 309-347, 1992.

[5] I. A. Beinlinch, H. J. Suermondt, R. M. Chavez, and G. F. Cooper,
”The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks,” in Proc. 2nd Europ. Con5 on
Art$ciai Iizieliigence in Medicine, 1989, pp. 247-256.

[6] C. K. Chow and C. N. Liu, “Approximating discrete probability distri-
butions with dependence trees,” IEEE Trans. fnform. Theory, vol. 14,
no. 3. pp. 462467, 1968.

171 J. Suruki, “A construction of Bayesian networks from databases based
on an MDL principle,” in Proc. 9th Con$ Uncertainty in ArtiJiciaZ
Intelligence. 1993, pp. 266-213.

I S] J. Rissanen, “Modeling by shortest data description,” Auromaticn, vol.
14, pp. 465471, 1978.

191 G. Rebane and J. Pearl, “The recovery of causal poly-trees from
statistical data,” in Uncertainty in Art$cial Intelligence 3, 1989, pp.

[lo] S. Acid, L. M. de Campos, A. Gonzalez, R. Molina, and N. PCrez
de la Blanca, “Learning with CASTLE,” Symbolic and Quantitative
Approuches to Uncertainh, Lectures Notes in Comput. Sci. 548, R. %use
and P. Siege1 Eds.

1111 S. Srinivas, S. Russell, and A. Agogino, “Automated construction of
sparse Bayesian networks from unstructured probabilistic models and
domain information,” in Uncertain0 in Artificial Intelligence 5, Windsor,
Ontario, Canada, 1990, pp. 295-308.

1121 E. Herskovits and G. Cooper, “KUTATO: An entropy-driven system for
construction of probabilistic expert systems from databases,” Knowl-
edge Systems Laboratory, Medical Computer Science, Stanford Univ.,
Stanford, CA, Rep. KSL-90-22, 1990.

San Mateo, CA: Morgan Kaufmann, 1988.

175-182.

Berlin: Springer-Verlag, 1991, pp. 99-106.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 4, JULY 1996 493

[I31 D. M. Chickering, D. Geiger, and D. Heckerman, “Learning Bayesian
networks: Search methods and experimental results,” in Preliminary
Papers 5th Int. Workshop on Artificial Intelligence and Statistics, 1995,
pp. 112-128.

[I41 D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” in
Microsoft, Technical Report MSR-TR-94-09, 1994.

1151 R. R. Bouckaert, “Properties of Bayesian belief networks learning algo-
rithms,” in Proc. 10th Annual Con5 Uncertainty in Artificial Intelligence,
Washington, 1994, pp. 102-109.

[161 P. LarraAaga, R. H. Murga, M. Poza, and C. M. H. Kuijpers, “Structure
learning of Bayesian networks by hybrid genetic algorithms,” in Prelim-
inary Papers 5th Int. Workshop on Artijicial Intelligence and Statistics,
1995, pp. 310-316.

1171 R. R. Bouckaert “Optimizing causal orderings for generating DAG’S
from data,” in Proc. 8th Con$ Uncertainty in Artificial Intelligence,
1992, pp. 9-16.

1181 M. Singh and M. Valtorta, “An algorithm for the construction of
Bayesian network structures from data,” in Proc. 9th Con$ Uncertainty
in Artificial Intelligence, Washington, DC, 1993, pp. 259-265.

[I91 W. Lam and F. Bacchus, “Learning Bayesian belief networks. An
approach based on the MDL principle,” Computational Intelligence,
vol. 10, no. 4, 1994.

[20] ~, “Using causal information and local measures to learn Bayesian
networks,” in Proc. 9th Con$ Uncertainty in Artificial Intelligence,
Washington, DC, 1993, pp. 243-250.

[21] P. Larrafiaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M.
H. Kuijpers, “Structure learning of Bayesian networks by genetic
algorithms: A performance analysis of control parameters,” IEEE Trans.
Pattern Anal. Much. Intell., in press.

[22] G. M. Provan and M. Singh, “Learning Bayesian networks using
feature selection,” in Preliminary Papers 5th Int. Workshop on Artificial
Intelligence and Statistics, FL, 1995, pp. 450-456.

[23] L. R. Andersen, J. H. Krebs, and J. D. Andersen, “STENO: An expert
system for medical diagnosis based on graphical models and model
search,” J . Appl. Stat., vol. 18, no. 1, pp. 139-153, 1991.

1241 S. Kreiner, “On tests of conditional independence,” Statistical Research
Unit, University of Copenhagen, Res. Rep. 89/14, 1989.

[25] R. M. Fung and S. L. Crawford, “Constructor: A system for the
induction of probabilistic models,” in Proc. M I , Boston, MA, 1990,

[26] S. L. Lauritzen, B. Thiesson, and D. J . Spiegelhalter, “Diagnostic sys-
tems created by model selection methods-A case study,” in Preliminary
Pupers 4th Int. Workshop on Arti$cial Intelligence and Slatistics, 1993,
pp. 93-105.

[27] H. Akaike, “New look at the statistical model identification,” IEEE
Trans. Automat. Contr, vol. 19, pp. 716-722, 1974.

1281 D. Madigan, A. E. Raffery, J. C. York, J. M. Bradshaw, and R. G.
Almond, “Strategies for graphical model selection,” in Preliminary
Papers 4th Int. Workshop on Arti$cial Intelligence and Sluiistics, 1993,
pp. 331-336.

[29] R. Mechling and M. Valtorta, “PaCCIN: A parallel constructor of
Markov networks,” in Preliminary Papers 4th lnt. Workshop on Artijicial
Intelligence and Statistics, 1993, pp. 405410.

1301 G. M. Provan, “Model selection for diagnosis and treatment using
temporal influence diagrams,” in Preliminary Paper.7 5th Int. Workshop
on ArtiJicid Intelligence and Statistics, 1995, pp. 469-480.

[31] J. H. Holland, Adaptation in Natural and ArtiJicial Systems. Ann
Arbor, MI: The Univ. of Michigan Press, 1975.

[32] U. K. Chakraborty and D. G. Dastidar, “Using reliability analysis to es-
timate the number of generations to convergence in genetic algorithms,”
lrform. Proc. Lett., vol. 46, no. 4, pp. 199-209, 1993.

[33] A. E. Eiben, E. H. L. Aarts, and K. M. van Hee, “Global convergence
of genetic algorithms: An infinite Markov chain analysis,” Computing
Science Notes, Eindhoven Univ. of Tech., 1990.

[34] G. Rudolph, “Convergence analysis of canonical genetic algoritms,”

pp. 762-769.

rithms for the travelling salesman problem: A review of representations
and operators,” submitted to Art$; Intell. Rev.

1381 D. E. Goldberg and J. R. Lingle, “Alleles, loci and the traveling salesman
problem,” in Proc. Int. Con$ Genetic Algorithms and Their Applications,
Pittsburgh, PA, 1985, pp. 154-159.

[39] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation
crossover operators on the TSP,” in Proc. 2nd Int. Conj on Genetic
Algorithms and Their Applications, Cambridge, MA, 1987, pp. 224-230.

[40] L. Davis, “Applying adaptive algorithms to epistatic domains,” in Proc.
Inc. Joint Con$ on Artijicial Intelligence, Los Angeles, CA, 1985, pp,
162-164.

[41] G. Syswerda, “Schedule optimization using genetic algorithms,” in [36],
pp. 332-349.

[42] H. Muhlenbein, “Parallel genetic algorithms, population genetics and
combinatorial optimization,” in Proc. 3rd lnt, Con$ on Genetic Algo-
rithms, Arlington, VA, 1989, pp. 416421.

[43] P. LarraAaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga, “Optimal
decomposition of Bayesian networks by genetic algorithms,” Dept. of
Com. Science and Art. Intel., Univ. of the Basque Country, Int. Rep.
EHU-KZAA-IKT-3-94, 1994.

1441 Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin: Springer-Verlag, 1992.

1451 W. Banzhaf, “The “molecular” traveling salesman,” Bid. Cybern., vol.
64, pp. 7-14, 1990.

1461 D. B. Fogel, “A parallel processing approach to a multiple travel-
ing salesman problem using evolutionary programming,” in Proc. 4th
Annual Parallel Processing Symp., Fullerton, CA, 1990, pp. 3 18-326.

1471 D. Whitley, “The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best,” in Proc. 3rd Int.
Con$ on Generic Algorithms, Arlington, VA, 1989, pp. 116-121.

[48] K. A. de Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. Dissertation, Univ. of Michigan, 1975.

[491 E. H. Herskovits, “Computer based probabilistic-network construction,”
Doctoral Dissertation, Dept. Medical Information Sciences, Stanford
University, Stanford, CA, 1991.

A New Method for Evaluating Weapon
Systems Using Fuzzy Set Theory

Shyi-Ming Chen

Abstract-This paper presents a new method for evaluating weapon
systems using fuzzy set theory. The proposed method is more flexible
than the one presented in 1111 due to the fact that it allows each item
of criteria to have a different weight represented by a triangular fuzzy
number. Furthermore, because the proposed method does not need to
perform complicated entropy weight calculations as described in 1111, its
execution is much faster than the one shown in [U].

1. INTRODUCTION
In [111, Mon et al. have presented a method for evaluating weapon

systems using fuzzy Analytic Hierarchy Process (AHP) based on
entropy weights [lo], where an example is used to illustrate the
method. The example is reviewed as follows. Assume that there are
three tactical missile systems A, B, and C to be evaluated, where
the tactical specification data of the three missile systems and the
expert’s opinions are listed in Tables I and I1 (data source [12]) for

1351
submitted to IEEE Trans. Neural Networks.
D. E. Goldberg, Genelic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989. under Grant NSC 84-2213-E-009- 100.

1361 L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[37] P. LarraAaga, C. M. H. Kuijpers, and R. H. Murga, “Evolutionary algo-

Manuscript received November 5, 1994; revised May 28, 1995. This work
was supported in part by the National Science Council, Republic of China,

The author is with the Department of Computer and Information Science,

Publisher Item Identifier S 1083-4427(96)03847-7.
National Chiao Tung University, Hsinchu 30050, Taiwan, R.O.C.

10834427/96$05.00 0 1996 IEEE

